ROUTE-LEVER SIGNALLING, WINCHESTER, GREAT WESTERN RAILWAY

By the Ferreira-Insell Route-I, ever Signalling the actuation of one lever simultaneously moves, or holso, all the point levers, and then lowers the requisite signal for a required route.

If the files of the Rirnilurey Eingimener, partic:ularly throse for the years immediately prior to and immerliately suceceding the war 1910, were searched there would be: found desereriberd therein several schemes for one lever actuating the points and signals for each route possible at a signal box. All these: ideas were of French origin, and it is not without intrerest, to know that the first such was designed to meet prossible latorour troubles. The roarl, in this, the original, scheme, was " marle," by the turning of a key, an that it prointed to the direction in
and Srouthampton section of the Gireat Western Pailway, and just shore of where that line joins, at Shawford Junction, the Srouthern Piailway main line beetween Porenton and Southampten. The line js single, and Winchester is a pasair! place, with a siding, mainly for horse--boxese, on the: up side, and one, leading to a gerods yard, on the drown side. The single: line: thenese tor, Shawford Jenction is operaterl bye thes electrical tatilet, and we would here rernark that since we visites]. thes installation the tablet has bee:n marle: to conter, l

Fig. 2.-Typical Point Lay-out.
which the movernent was to be made, e.g., if to be to the up line the key had itis pointer turned to "up line "; if for No. 2 siding then to "t No. 2 siding." From what we saw of these arrangerments at that time they appeared to do their work properly, and their somewhat externsive use, particularly on the Northern and Eantern Railways of France, suggested that they gave satisfaction.

The syutem of soute-lever signalling we are: now about to doweribe nehiewes the purposes mentioned above, but, in pomeral, by mans identical to mont power-mignalling methorls. Lis the type of locking frame and in the signal and point. Euctiminto and actuation there is very little diswimilar from the all eloctric pruwier wintems hitherto semen in this country.

The lay-out at Winchester.

Eig. 1 is a Miagratio of Winchentor, Cheasehill, atation,

No. 14 starting signal and No. 15 inner home. The section Winchester-King's Worthy is operated on the token system.

Winchester is not, in our opinion, sufficiently large fully to demonstrate the possibilities of route-lever signalling as compared with the usual power signalling, which latter, as is known, needs much fewer levers than mechanical signalling. A case in our mind, better illustrating these possibilities. is where there are two crossever-junctions. This reguires to-day 40 working lewers for mechanical operation, would neerel 28 were it power signalled, but only 17 route leveres would be nece:suary.

At Winchester there are 1f levery in the leseking fromes. which are allotted as leetered in the lowking liat. Fige 1. No. I is the king lever which is relerreal to lolow mater she cross headinge" Individual Operation" It addition to theare 1 i levers there are, at alme referreal to thlow, six stides win the

Fig. 3.-Interior oí Signal-Bot.

Fig. 4.- Powar Switchboard (lett) and Contactor Case (right) in upper part of Signal-Box. Batteries in lowor part

Fig. 5.-Facing Point Equipment.

Fig. 6.-Great Western New Faoing Point Look.
front af the locking frame for use when points need individually 10 lx oprated. These are numbered 17 to 22 inclusive.

Method of Operation.

I: the diagram in Fig. 1 be studied it will be seen that, with the exception of king lever No. 9, all the levers control signals. Each signal has its own route, and when the determinerl lever is pulled those points which need to be reversed are unless already reversed. moved from normal to reverse, and those which have to be normal are, unless already normal, shifterl from reverse to normal, and when this is done the signal is put to "clear." All point movements are made concurrently and not in series, and current cannot flow to the signal unless and until all the points are in position. It will be convenient to add at this point that should the road concerned be fouled after a signal has been put to "clear," or if any of the affected points be damaged, the signal automatically. would be put to " danger."

Track circuit forms a greater basis in route-lever signalling than it usually does in power signalling. At Winchester there are, as indicated in Fig. 1, five track circuits, and they
are clear, contacts, operating also at 24 wolts, crmplete a circuit from the 120 volts supply to each of the proints errncerned, and when the road is " made," i.e.. all these proints in their required normal and reversed position. the cherk lock that has prevented the lever moving further than the "route" position is withdrawn and the orange light in the second row appears. The full stroke of the lever now may be completed to lower the signal. When that is correctly done the green light in the third row is switched in and the red light disappears.

This sequence is not, however, exactly reversed when a lever is restored, as here is another important feature of the system. The replacement of a lever leaves the points unaltered, i.e., in the position set when the lever was pullerl over, unless they act as safety points. If they are, or hare connected to them, trap points, e.g., No. 20, No. 17, and the further end of No. 18, they, however, follow the signal. If. on the other hand, they are other than safety points, e.g., Nos. 19, 21 and 22, they remain as they were. For instance. the pulling of either of Nos. 2, 3 or 12 signals mould move No. 22 points so as to lie for the up line, but when the signal

control the different signals as set out in the locking table given in that illustration.

An essential feature calling for carly mention is the four row's of lights facing the signalman and placed behind the levers-four lights for each lever. When a lever is normal a red light in the uppermost row is in. The second row has Ereenl lights, the third orange, and the fourth white. Their purpose will be described directly. Another essential is that, as in mosi fower systems, the forward and backward strokes are made in two stages. The first forward stage is from the " normal "position to the "route" position, and the second is tromi "ronte" to "signal." In reversing, the first stage is from "signal" to "track," and then from "track" to "monmal." Each midway stage is, as usmal, controlled by a check lock It many also here be observed that only 24 volts in netmanary for all controlling purposits; only for the actual "yneration of the prointes and siguals is power at 120 volts neewasty: The contacts for making and breaking the control and ans:atilig eiremito are cartied on sidedes attached to the tervis.

Whats a lever io moved from the " normal" to the "route" pasition, Whe track circuits comeerned. oprating at et volts, cantim provideat the racks afferted are chear, the respective

was put to "danger" the points would remain lying for the up line. They would thus be in position for any of these three signals again to be used, and so the power that mould have been employed to restore and again to reverse the points would be saved. But were No. 4 or No. 5 or No. 16 wanted, the points would respond and lie for the down line.

The first movement, in restoring a lever, is from the " signal" to the "track" position. This would put the sigual to " danger," but would leave all the points unaltered, even those acting as "traps." When the signal is "on " the green indication disappears and the red again is illmmated. If the train or vehicle has passed of the track cireuits controllin! the lever in question the white light also is illumimated and the check lock is withdrawn. The lever may then be put from the " track" to the "normal" position, and when those points that are, or have, safety points are normal. the white light goess out and, again, only the red is seen. If, however. The truin has not laft, or the line be otherwise oeeupied, the cheok lock will not be withdrawn and the lever consenfuently cammet be moved from "track" to " normal." An intimation that the lever remains locked is indieated by the nonqupparance of the white light. One result of the trach circuits thus holding the levers is that there is no mecessiter to provide locking bars to the lacing print plungers.

Provision for Individual Operation.

There are, necessarily, times, c.!., when forintes reppure cleaning. arljuating or rejpairing, when it is reguisite: tor work a set of perints independently of the: reomplete ronte. For that jurpese there are provided the mix mliden, ulrearly montoned as in thre front of the locking frame. which are numbered 17 to 22 inclusive, and esonnceted relestrically tor the pronts.s. numbererd correspondingly on the riagratn, Fig. 1. I'hesce alides stand normally in a midway or noutral josition and have: two indications. When in thrir normal pesition greren is shown, and, when reversed, srange. These: indications are operative at all times, whether the jesint.u are controlled by the route Irevers or are being individnally operaterl. I'hoses: levers cosupled to safoty joints show, however, rod when reverserl. in orler to draw suecinl attention tes their positionl.

It is for this individual ojeration that the king lo:ver is provirlerl. It stands normally in the "rout.e" prosition and is locked when there by revery other lever in the frame: iee. every other lever must bee normal before No. 9 can be moved from" its "rontes" possitionl. When pulled to the:" signal" position revery other lever in the frame: is locked and all the josint slides are: froe.

When the requisite work has bren dose to, the jorints the slides must bre restored to the nentral or normal josition in ordes to replace the king lever and thereby free the route lo:vers. The restoration of the king lever will antornalically restore: an! safrety joints which may have been reversed during the manipulation of the posint slides. Joints rether thsin sufety proints will, as in the former case, be lrift as last placerel.

Should a lever in thr: frame not get the expectroll rosprensese, say: owing to the track relay failing to jick up), arrl it cannot, be moved from "track: to, "norrnal," this, gensrally, will be put right by moving the king lever from" route: " t.o) " normal and then back to "routr:" again.

Interlocking.

As there are no purely point levers in the frame, sil the interlocking is done through the signals. This is a feature that is contrary to the basis of interlocking wherein the greater part of the work is done through the point levers. This necessitates a larger number of looks but, actually, all "dead" locking is more casily achieved. What must have been troublesome was that the restoration of some wignal levers would put certain pointes into their normal position whilst they were still rerguired to be reversed. For that reason some of the locking does not come into play until the signal lever has been moverl back from the " signal " to the " track position. If each lever be: traced through the locking list given in Fig.], sorne novel features will be found. The way in which the " road is held " is very clever. No. 16, for instance, when put to "danger," i.e., when it reaches the "track" jusition, locks Vos. 1, 7, 8 and 10, and, therefore, none of those signals can be lowered until No. 16 has been put fully to the "normal" position.

Tlie locking frame is of an entircly new design of Siemens Brom. di Co. Jtd.

Point Mechanism.

Fig. 2 is a reproduction of a photrographic view of Nos. 18 and 1:4 proints where the latter becornes the south end facing points of the passing loop. The points and motor mechanisms in the inmediate foreground are No. 18; the next motor is coupled to No. 17 trap proint, the single switch of which is wees on the extreme right, and the further points are No. 19, (o) which is coupled the furtheat motor mechanism. The swers in the "four-foot" have been temporarily turned back, whou the tigm removed from the motor and detector
The operation of the peints will bee better understood from Pie 5, which in a copy of a drawing kiadly supplied by Siemens Bres, and whels may tre iunagiued as illustrating No. 19 prine. The ructor is ountained is the case u, and when the
pointa nire belteal, ne in the rase illustrated, the: firat, moverment withdrawn the plunger 1). Viy the time this is done the crank

 Fig. 2, on the "pper mide of the wheal, having renchad a contral presition, canses, when further actuated, a movernent. in the "pposite direction to be given to the phanger se that the pointe. are agnin boltoch, but, in their new prosition. Each of the: two poind switches is deteceted elecetrically in the: rame: d;
 sand red di² from the jhanger.

The detecetion of plungers is now a very importanit,
 adopted hy the: Great, We:stern Rinilway. The: plunger blade: 1, movess in the canstinge through the slote ei of which there atretcher red of the pointes pesseses at right angles ter the plunger. The: blade: is bevelle:d at, 1,1 as shoswn, and this asct.s upon the: croses motion f as seren cleares in the drawing, Figg. 6-lying in the recosens e^{2} in the casting. I's, the eross motion is attacherd at

The safel,y spring seern, with its cover removed, in Fig. 2, deserves seme memtion, arn! details theresof are: therefore givern in FFig. 7. It is jorevided by th: Cireat 1 Vestern Rasilway to, ohviate damage: to the awitehes and to, the peint meschaniam whern preints are rum thre,ugh trailing frem the direstion for
 is in two parts. The part, nearer the switchess ends in blade A and that nearer the motor in thade B. In the rend of each blarle are two conterers, anoll betweren each pair of cotters is a spiral springe. The spring is sufficiently rigin that when blacie 3 ' is menved it, will carry blade A with it, but sufficiently dastic tof yir:ld to such undure pressure: that would cotore from blade A be:ing force:d in or pulled sut, as would happern when the points were run through. After the peressure had passerel the spring wosuld return the switches to, their former position. The blades are slotted sor, that, if compressixhl, they may dovetail. A pressure of jewt. is necossary to compress the spring !) in.

The system has been invented and patented by Mr. I. M. G. Perreirit, Assoc.M.Inst.C.E., chice of the railway simnal department of Siemens Bros. \& Co., Caxton Huuse, S.W.I, and Mr. R. J. Insell, Chice Assistant to the Signal and Telegraph Eingineer, Great Western Railway. We are, as already said, indebted to Siemens Bros. for the drawing from which Fig. j has been prepared. For the remainder, and for the opportunity to inspect the work, we have to thank Mr. A. T'. Blackall, M.Inst.C.E., Signal and Telegraph Engineer, Great Western Ruilway.

RAIL RECLAMATION IN THE UNITED STATES.

Recognising that rail wear takes place more rapidly at the ends and necessitating rencwal long before the main portion of the rail shows signs of wear, the Illinois C'entral Railway have introduced the practice of cutting off the damaged ends and relaying the rails, which are then in good condition.

According to our American contemporary, the Enfinvering News-Record, two plants for cropping and drilling rails battered or worn at the ends are operated by the railway, one of which is portable. The permanent plant is situated at Centralia, III., and is equipped with electrically-driven machinery. Some 22 men are enfoloyed, giving an average output of $10,000 \mathrm{ft}$. of rail drilled and sawn per eight-hour day. The portable plant is moved from point to point where worn rails are stacked when relaying is to take place: in the samb district, thus avoiding long haul of the rails to the permanent plant.

A standard crop of 12 or 18 in . at each end is adopted, and rails from a particular truck-and therefore of uniturms mear are: kept tugither to facilitate matching of jointe when rebyiog.

[^0]Fig. 1.-Lay-out of Signalling and Locking List, Winchester (Cheesehill).

[^0]: W. signifies "When." N. signifies " Levers Nos. 14 and 15 locked by tablet from Southern Railway.
 . signifies "Normal." R. signifies "Reversed" T. signifies "Track" position. S. signifies "Signal" position.

